Riemann Surfaces
Exercise Sheet 6

Exercise 1. (meromorphic functions with one simple pole)
Let M be a compact Riemann surface and let f be a meromorphic function on M with only one simple pole. Show that M is conformally equivalent to $\hat{\mathbb{C}}$.

Exercise 2. (symmetries of tori and coverings)
Let $M \subseteq \mathbb{R}^3$ be an embedded torus obtained by rotating a circle in the xz-plane with center on the x-axis around the z-axis.
(a) Topologically, what surface is obtained by identifying pairs of points on M that are symmetric with respect to a 180° rotation around the x-axis?
(b) Topologically, what surface is obtained by identifying pairs of points on M that are diametrically opposite, i.e., images of each other under the map $x \mapsto -x$.

Exercise 3. (handles and crosscaps)
Show that $\mathbb{R}P^1 \# T^2 = \mathbb{R}P^1 \# \mathbb{R}P^1 \# \mathbb{R}P^1$.

Hint: Come up with a cut-and-glue procedure. Alternatively, make drawings of deforming surfaces. For the second approach, note that $\mathbb{R}P^1$ is a Möbius band with a disk glued to the boundary, and $\mathbb{R}P^1 \# \mathbb{R}P^1$ is the Klein bottle.