Mathe Vital BannerZentrum Mathematik BannerTUM Banner

Komplexe Abbildungen eines Gitters (für Fortgeschrittene)

Im folgenden Applet kann man ausprobieren, wie sich die Umgebung eines Punktes unter einer komplexen Abbildung verhält. Die Funktion kann frei gewählt werden. Es wird eine gitterförmige Struktur in der Umgebung von $z$ durch die komplexe Funktion $f(z)$ abgebildet. Die Gittergröße kann über den grünen Punkt verändert werden. Die Schieberegler $a$ und $b$ können als freie reelle Parameter verwendet werden, die Vektoren $c$ und $d$ können als freie komplexe Parameter verwendet werden.

Mit diesem Applet kann man viele Experimente machen. Insbesondere kann man auch Funktionsterme aus Teilfunktionen wie $\sin(z), \cos(z), \exp(z), \sqrt(z), $ zusammensetzen.

Es ist meistens besonders spannend zu beobachten was passiert, wenn der Punkt $z$ auf den Ursprung des Koordinatensystems gezogen wird.

Einige Beobachtungen


Komplexe Abbildungen $\hookleftarrow$ Inhaltsverzeichnis $\hookrightarrow$ Geometrische Abbildungen als komplexe Funktionen