Mathe Vital BannerZentrum Mathematik BannerTUM Banner

Lissajous Kurven

$ \gamma: \R \rightarrow \R^2, \gamma(t)=(a \; cos(\omega_1 t-\delta_1)\;,\; b\; sin(\omega_2 t-\delta_2))$

heißen Lissajouskurven. Sie entstehen durch Überlagerung linearer Schwingungen, die in zwei zueinander orthogonalen Richtungen auf einen Punkt wirken.

Bitte schalten Sie Java ein, um eine Cinderella-Konstruktion zu sehen.

Lissajous.cdy: Lissajous.cdy

Ihre Form ist abhängig vom Frequenzverhältnis $ \omega_1 / \omega_2 $ und der Phasenwinkeldifferenz $\delta_1 - \delta_2$. Sie sind genau dann periodisch, wenn das Frequenzverhältnis rational ist. Für $ \omega_1 / \omega_2 = 1$ erhält man Ellipsen mit unterschiedlichen Achsenverhältnissen.