BannerBannerBanner

Projective Geometry in the summer semester 2016

Module MA3203 4V+
Date Monday 16:00–18:00 and
Thursday 16:00–18:00 in MI HS 3
Lecturer Prof. Jürgen Richter-Gebert
Tutorial organization Bernhard Werner

News

Exams

Material

Main exam

Second exam

Lecture material

Nr. Date Whiteboard Materials Nr. Date Whiteboard Materials
1 11.04.2016 Overview   2 14.04.2016 Projective planes  
3 18.04.2016 Finite projective planes   4 21.04.2016 Collineations & projective transformations  
5 25.04.2016 Desargues & Pappos I   6 28.04.2016 Desargues & Pappos II Slides
7 02.05.2016 Cross-ratios   8 05.05.2016 No lecture  
9 09.05.2016 Harmonic point sets   10 12.05.2016 Collineation over \(\mathbb R\)  
11 16.05.2016 No lecture   12 19.05.2016 From planes to fields  
13 23.05.2016 Interlude   14 26.05.2016 No lecture  
15 30.05.2016 Projectively invariant properties   16 02.06.2016 Determinants  
17 06.06.2016 QuadSets & Conics   18 09.06.2016 Conics & \(\mathbb RP^1\)  
19 13.06.2016 Calculations with Conics   20 16.06.2016 Intersecting Conics  
21 20.06.2016 \(\mathbb CP^1\)   22 23.06.2016 Euclidean constructions in \(\mathbb RP^2\)  
23 27.06.2016 Introduction to Cayley-Klein geometries I   24 30.06.2016 Introduction to Cayley-Klein geometries II  
25 04.07.2016 Movements in Cayley-Klein geometries   26 07.07.2016 Explicit formulae in Cayley-Klein geometries  
27 11.07.2016 Trigonometry in Cayley-Klein geometries   28 14.07.2016 Triangles in the Poincaré model  

Tutorials

The tutorials will start in the second week of the lecture. Tutorials are in English or German---depending on the participants.

Group Day Time Room Tutor Remarks
Group 1 Tuesday 10:00–12:00 MI 02.08.020 Bernhard Werner no class on May 17
Group 2 Thursday 12:15–13:45 MI 03.10.011 Katharina Schaar no class on May 5 and May 26
Group 3 Thursday 10:00–11:30 MI 02.08.011 Katharina Schaar no class on May 5 and May 26
Group 4 Friday 10:00–12:00 MI 02.04.011 Katharina Schaar  

Worksheets

A new worksheet will be published here every week. Some of the tasks are designed to be solved and discussed in tutorial classes. The homework exercises serve as additional practise. Their solution will get provided online---but they can be discussed in the exercise classes, if time permits.

Nr. Worksheet Solution Materials
1 de, en de, en  
2 de, en de, en  
3 de, en de, en  
4 de, en de, en  
5 de, en de, en  
Interlude Mnev's Theorem
6 de, en de, en  
7 de, en de, en  
8 de, en de, en  
9 de, en de, en  
10 de, en de, en  
11 de, en de, en  
12 de, en de, en  
Repetition de, en

Literature

Links